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SUMWRY

The present paper supersedes Technical Note Mo. 599
for determining the tinevelocity–al titude relations for
airplanes diving in a standard atmosphere and the Advance
Confidential ReFort entitled ‘Time-Velocity–Altitude Re-
lations for an Alrqlane. Diving in a Standard Atmosphere.”
The charts of Technical Note No. 599 have been extended
to include altitudes up to 36,000 feet and Ifnominaln termi-
nal velocities up to 800 ulles rer hour. In addition, the
present paper corrects an error In the factor that was
used in both superseded papers for converting the original
>asic charts to the cage of the inclined steady dive and
gives a si~ple nethod for taking into account the effects
of compressibility on the tine-veloctty-altitude rela—
tlons. Z!WO examples are included to illustrate the use
of thci charts.

INTRODUCTION

The velocit~~altitude relaflons for airplanes in a
dive have been treated by several writere. Diehl (refer-
ence 1) aseumed a constant—density atmosphere. Wilson “
(reference 2) and Becker (reference 3), who have taken
the variation of density into account though using dif-
ferent approached, have given no method for determining
the time to dive. Regardless of the manner in which, the
density is taken Into account, the velocit~altltude equa–
tions become too lengthy and complicated for general use
when a relatively quick answer may be desired. Charts
showing the tlm~velocit~altitude relations have there-
fore been constructed.

Such a series of charts was given in reference 4 for
determining the time-velocitpaltitude relations for an
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airplane diving in a standard atmosphere. When theso
charts wero first prepared (1934) , the range of initial
altitudes extended to 32,000 feet and the range of air-
plane “aominall’ terminal velooitles extended to 550 miles .
per ho~. These limits , for both the altitudes and the
terminal velocities, were mainly determined by the per-
formance of the airplanes available at that time, al-
though the difficulty of including compressibility effects
and cltiiudes above the tropopause w~.e recognized.

At the present time, however, the nominal .Indicated
J terninal velocities of a large number of airplanes, that

1s, the terninal velocity based on a constant ninimum
profile-ihag coefficient and standard sea-level conditions,
ere found. to be considerably in excess of tho speed of
sound (763 mph) and altitudes above 32,000 feet are quite
ordinary, The original charts are thus insufficient to
cover the possible range even though the effects of com-
pressibility on the profil-drag coefficient could be
ne~locte~.

.

The present paper extends the original charts to
nomine.1 teruinal velocities above the speed of sound and
to an eltitu$.e of 36,000 feet. The extension also in-
cludes a rel=tlvely simple method for determining tho ef-
foot of coupresalbili.ty on the time–veloclty-altitude
relations. The use of this method requires a knowledge
of the nozinal terminal velocity of the airplane and of a
terminal Iiach number for the airplane profile-drag coof–
ficient.

In add~tion to the extensions made to the tiue-
velocity charts of reference 4, the present peper corrects
an error that was made in the factor of this reference,
which was also used in reference 5, for converting tho
original basic charts to the case of the inclined steady
Live. In order to mako the present paper comploto and
independent of references 4 and 5, the necessary original
deriv:~tibns given therein are first repeated and the o-~
tensions and modifications are then introduced.

TIMI?-VXLOCIT’Y-ALTITUDI!! CHARTS WITE

COMPRESSIBILITY EFFECTS NEGLXCTED

‘The time+velocity-al.titude charts, which are given
in figuresl to 14, cover a range of nominal terminal

I
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velocttles from 150 to 800 miles per hour In increments
-“‘of 50 miles per hour. “ !l!hd“start’iiig‘altit-ud”de-”%aiY- fr-ok

8000 to 16,000 feet in intervals of 2000 feet and from
+ 16,000 to 36,000. feet In Intervals of 4000 feet. Th B
h
xl terminal velocity U, by which eaoh chart is designated,

Is the velocity that a body would have in an atmosphere
A of constant sea-level density and with a constant profile-

drag coefficient such as would be obtained at relatively
J’ low speeds. The abscissas of the curves are the true,

not the iudicated, velocities. .

In the establishment of the veloclt~altitude curves
(full curved lines in figs. 1 to 14) , the type of equat+on ‘
developed in reference 2 was used with slight modifica-
tions to the constants to give better agreement with the ..
recognized standard atmosphere of reference 6. These
modifications consisted. in replacing the factors 3 and

. 1200 occurring In the original equations of reference 2
by the factors 2.7 and 1254, re8pectlvely. The new equa-
tion is

, ,n;&\= H

(

1C?54 \a

Va “1 +
N

2.ThY,{~j ‘ 2.7h\- “

= 2’ f 154000) . 1 + 6400~~ ‘“’mu’ u (1)
h

wh ero

V true airspeed, feet pes second

g acceleration of gravtty (32.2 ft/sec2)

h altitude, above sea level, feet
t

H starting altitude, above sea level, feet

U terminal velooity of airplane in air at standard sea-
level density with constant profile-drag coefficient,
uiles per hour

Tho placing of tho tine network on the charts, shown
by the full lines running diagonally across the various
curves, was accomplished either by the use of the equations
applying to a body falling in a vacuum or by the use of a
step-bpstep process of integration. Each Qf the fore-
going methods had a particular region in whioh it was more
easily appllod than tho othor for the same degree of ac-
curacy.
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The aaceleratlon of an airplane in a vertiaal dive,
at any inwtant, can be given by

where

a = 32.2
(’ -.>

~“ (2)

a aaoeleration, feet per eecond per eeoond

q dynamic pressure, pounds per square foot
(2)
L pva

q~ dynamic pressure at the ~ominal terminal velocity,
pounds per squtire foot

P ma~a denelty of air, mlug~ per cubic foot

Equation (2) indicates that, during the e~yly part of the
dive before appreciable velocity is gainedf tl’.eaccelera- .
tlon differs only slightly from g; for this range of ths
charts , therefore, the vacuum forau~a is ,?pplicable within
the plotting accuracy. The rmn~e within which the vacu~m
formula C= be applfed for d.eteraining the tln~ increases,
with either the startin:: altitude or the terminal velocity.
1.!ostof the timing lines below 6 seconds were computed hY
using the vacuum formula and, in some cases, the range was
extended to 8 seconds. At values above 3 necoads, the
time line~ were established by a st.ep-b~step ?.ntegration
of the relocit~altltuiie curves.

The cbarte (figs. 1 to 14], although derived fcr a
vertical dive starting from rest, may be uced with vr.ri— .
ous diving angles an& st~ting velocities. .If U is the .
teruinal veloc<ty of an airplane in a vertical dive, the
terninal velocity in a tiIVO in ~fhich the flig:nt path makes
8 constant angle Y with the grov.nd is

The new aoninal termin~l velocity to bo used in selecting
the appropriate chart ?or determining the Telocity-
altitude relations in an incliuod Live is therefore

U1 4=U (sin mfj;

.

—-—



5

..Although the velocity-altitude relations for the Inclined
dive ar&-”-cor’~eo$lygiven ~’t’hb-”hew ‘ohart, the’t-ime--
altltude relatione that are obtained must be divided b~
the sine of tho d~ve angle. The treatment of the Inclined
dive used in references 4 and 6 has been found to be in
error.

Values of U (sin Y)h are tabulated on each of the
charts and it will he noted that, when these factors are
used, biterpolation between charts will alhost always be
nece~aary to o%tain the necessary relations. The effect
of an Initial diving speed is taken into account by aon-
eidering that the airplane etarted to dive frsm rest at ;

a somewhat higher altitude.

The only errors In the charts that need be considered
are those due to plotting and to the discrepancies that
will occur in any step-by-step integration. The error in
the time lines due to the last source Is believed to be
within 2 percent; the plotting error In the velocity-
altitude curves is considered negligible.

In the application of these charts to diving air–
planes, however, several uncontrollable sources of error
will exist, namely:

1. Variation of atmosphere from stamdard

2. Manner of entry into the dive

3. Varla%lon of the dive angle from the value assumed

4. Prop~ller effect on drag

5. Scaio and compressibility effect on the airplane
d? &g

The error due to the first source is believed to be negli-
gible and need not be considered. The manner of entry into
the dive, although relatively unimportant In the determl+...
nation of the time-velocity-altitude relations for the
longer dives, may become Important in the shorter dives.
The effect of using an erroneous dive angle is likely to
cause appreciahl.o errors in the determination of the time-
velocity-aititude r~latlons only when the dive angle is
small. An orroneoue evaluation of the propeller effect
on the drag IEI -other source of error that is likely to
occur. In the selection of the proper ohart, it is neces-
sary that the propeller effeot be taken into account.

.-. — -. .
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The charts as gt?en do” not consider any variation of
profile-drag coefficient with either Reynolds or Maoh
number; whereas it is known that , at certain orit ical
speeds, large variations will occur because of compressi-
bility effects. Before this region of rapi~ Iacremse is
reached, however, the profile-drag coefficient may be
consi~erod constant and the oharts may be used up to this
point to obtain the timo--velocity-altltudo relations.
Because the point at which the drag coefficient Increases
cannot be ostablishad in advaaco, various dashed lines
havo been placed on figures 5 to 14 to roprcseat a au~ber
cf values of the Maoh Lumber H from-0.5 to 1.0. These
lines were determined for the chart by the equation

v= 53.51:d 519 – 0.00356h (4)

which expresses the relation between the velocity in
~lles per hour, the Hach numbes, and the altitude in a
standard atmosphere. Values of H from 0.50 to 1.00 ‘
were first r.ssumed, the points of the various curves that
satisfied the foregoing relation were then obtained b~ a“
“trial-and-error process, mnd ali points for a given value
of M were joined.

ESTIMATION OF COHI?RESSIBILITY E12NCTS

In order to use the charts that are given (figs. 1 to
14), it Is necessary to determine or to define e point in
terms of the Mach number beyond which these charts should
not be used. Cb+iously, no simple determin::tion of this
quantity is possible because the airplane is mr.iiouy of a
number of parts, each of which may have a different
‘critical” speed and a different rate of change of ~rofile-
drag coefficient in this critical region.

The”rate of increase in the over—all airplaae”profile-
“drag coefficient beyond the point at which the first .pnrt
reaches Its critical speed may vary within r,ather wide
limitR, depending upon the shape and the relcti~e size” of
the part and alsG upon whether a numbm of parts reach
their criticnl speeds simultaneously or in. succession.

In order to estimate the variation of the over–all
profile-drag coefficient with Maah number” from rmesults
obtained at speeds for whioh compressibility effects are
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small, as in the ordinary wtnd-tunnel test, the increments
.. .- of,pr.of,i,lm~&ag coefflolent of the varlouE psmts must be

added to the ‘initial ‘over% ll’-tial-uelwhich is assumed to
+
% be reasonably oonstant. Then, inasmuoh as the drag coef-
: flclent 26 generally based on wing area, it is neoessary ..I,. to correct the increments to the wing area by multiplying

the drag-ooefflcient Increments” of each part by the ratio “
of the area on which the dra~coefficient increments are
based to the wing area.

The variation with Maoh number of profile-drag coef-
ficient near zero lift for somo well-known profiles is
shown In figure 15; the variation with Mach number of “t

drag coefficient for various cowlings on a typical wing
nacelle is shown in figure 16. These data, which are re-
ported in references 7 to 10, are typical of results ob-
tained in the EACA high-speed tunnels. The drag coef-
ficients given for the cowling-nacelle combination (fig. 16)
are based on the frontal area, that is, on TTil‘/4 wh er e
D in the largest diameter. Data are included for only
the wing and the cowling because these surfaces appear to
be the most critical factors in setting the finnl terminal
velocity, although the control surfaces, the fuselage, the
windshield, and protuberances will contribute to the over-
all effect.

Yigures 15(a) ant!.15(b) show that the thinner the
section, the later the occurrence of the oompreasibillty
effects. Because tail surfaces usually employ thinner
profiles than wings, compressibility effects are not likely
to occur on tall surfmces operating near zero lift (tail
lift coefficient <O.1) as is usually the case in the dive.
Although they may show comparatively early compressibility
effects, protuberances are not of particular importance
in limiting the airplane dive speed unless numerous and
comparatively large. Reference 11 gives the drag of two-
dimeasional cylinders of elmple shapes such as ulght form
protuberances . It must be remembered in using these data
that Important ond effects are omitted; this statement
also holds for wing tips where the air Is not constrained
to two-dimensional flow.

Inasmuoh as the induced velooites are, in general,
lower on streamline surfaoes of revolution, such surfaces
show later oomprensibility effects than cylinders of simi-
lar profile. On a practical fuselage, however, the wind-
shield and the various junotures may be sources of local

—— — —



compressibility effects that are difficult to evaluate.
Data are given in refe:ence 22 for de~ermining the com-
prossibillty effecte for a number of windshields on a
tyj?i CEl fuselage.

.
!?IM3-VELOCI TY-ALTI!2UDE Rl!!LATIOhW In THN

COHPEESSIBILITY RANGE

As previously mentioned, the charts of figures 1
tc 14 cannot be used beyond the point at whleh *he
profil+drag curves begin to deviate from a con~tanb
value without introducing some error in the relationo
sought . Bocauso the rates cf deviation may vsmy widely
betwesn airplanes, no single chart can be devised. to rep-
resent the relations beyond the point of deviation. If
an exact solution is requiredz it is therefcre necessary
to ev~luate by a step-by-step process the equation

dah

()

c~opva

—=~l-
dt a 2 w/s

(5)

where W is the weight in pounds and S is the wing
area in equare feet. This type of solution need not,
however, he lengthy, as the steps mar be taken at inter-
vals as large as 1 second and still give accurate results.

A.n approximation to the time-veloclt.y-altitude rela-
tions may be quiokly obtained, however, by the following
procedure, which employs the terminal Mach number that
would exist under standard atmospheric conditions at 1000
feet and the norminal terminal velocity on which the
previous charts were based. The method to be outlined
assumes that the profile-drag coefficient is constant up
to the time that the terminal Kach number is reached, at
which i>oint the drag coefficient immediately increases to
the value necessary to satisfy the equation

w= cDo~V=S (6)
..

The rate of increase is obviously more graducl than the
method Implies and some error is therefore introduced.
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This procedure, however, has been found to introduce only
small percentage errors in the tl.me-altitude relations
and somewhat larger. err-ors In the velocity-altitude re-
lations.

The terminal Mach number for standard conditions at
1000 feet is determined by plotting the-relation

H= 0.0264

r

*“
CD o

(7) :

.

in the same figure (fig. 17) as that giving the variation
of airplane profile-drag coefficient CDo with Mach

number. The abscissa of the lnterse~t~on of these two
curves represents the assumed terminal Hach number H*

that is required In the sim~llfiod method.

The results given by figures 5 to 14 are now used
until the a~sumed terminal Mach number is reached and
the values of the velocity and the altitude obtained at
this point are denoted by Vt and Ht. Beyond this point

the time-velocity-altitude relations are obtained from
figure 18 by locating the values of Vt and 5* and

interpolating between the appropriate Mach number” curves
to the altitude at which the results are required.

The tiue-velocity-altitude relations for an airplane
diving in a standard atmosphere at a constant Mach number
are represented in figure 18. The velocity-altitude
lines of this figure were computed from the equation

v = Mt(763.2 – 0.0027h) (8) :-,

which is the binomial expansion of equation (4) with the
first two terms retained. Integration of equation (8)
gives the relation for the time In the form

A% = = 10ge ( .)763.2 - 0.0027h

Mt . 763,2 – 0.0027H

?

(9)

Equation (9) was employed to compute the time-relations
of figure 18. The time required in the new range is found

,
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by noting the time at “~t” and subtracting that value

from the time read at any later altitude h.

EXAMPLES

1. In order to illustrate the use of the charts
that are given, as well as to show how the results ohv
tained with the sinple method compare with tho results “
of a step-b-step ccm~utatioa, the following examples
are ~-orked out for three hypothetical air~lano~, A, 39
an~ C, Sor which the comnon characteristics are:

Wei@t, pounds. . . . . . . . . . . . . . . . . . 6600 “
Wing area, squarefeot. . . . . . . . . . . . . . 240
Initial di~e speed, miles per hour . . . . . . . 0
Initial dive angle, degrees . “. . . . . . . . . . 90

The inlti.al starting altitude for A is 20,CO0 feet; for
3, 24,000 feet; and for C, 25,000 feet. Tie over-all

Cn o curves both have an initial value of CIJO+= 0%0199 .

but 3egin to vary at H = 0.4, “as shown in fi&e 17.
The noaiual teruinal v~locities of these airplaues are
conputed cs .

v

The VRIUOS of xt ar o
. for airplanes A, 3,

. ‘mL!s_
/ P. Cl)oi

‘b
/ 2x25

=

~1 0.00237 x 0.0199

= 1029 foot per second, or

= 700 miles per hour

seen to be 0.6?, 0.7S, aad 0.77

an~ C, res~ectively.

3y use of these values of Ht in conjunction with

figure i2 (U = 700 mph), the following values are obtained:

.
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I

H% Vt Time to Ht
Airplane (it) (fps) . (see). . .. ..

A 10,250 49a ~ 25.5

B 12,200 534 28.2

c 12,250 566 30.2

The foregoing value% of ‘ Et and Tt are located in

figure 8 and a ourve ie interpolated to tho ground, where “
the velocltiea are found to be 512, 557, and 593 nllets ~
per hour for airplanes A, B, and C, respectively.
The time increments from the altitude H~ to the ground

are found to be 14, 15.fi, and 2.4.5 seconds, re~pectlvely.
The comparison between the step-%y-step and the chart
methods is shown in figure 19, in whloh it nay %e noted
that , even though wide variations in the rate of increase
of prcfiledrag coefflcie~t have been used., the errors in
the velocity ourves at any point are less than 3 percent
and tend to be averaged over the whole range. The error
in the time to reach a given altitude la much s]~mller than
3 pe:”cent because a conatnnt difference of relocity aa
great as 15 miles per hour can be applied fcr over 20
aeconda aad still make a difference of leas than 500 feet
in altitude.

The procedure for taking an initial diving spead
into e.ccount is also indicated in fi~re 12. If: there-
fore, air~lane A had started to dive at a velocity of
150 zdlea per hour at 16,000 feet, the curve drawn from
point D to point E would hold.

2. The following example la included to Illustrate
the uae of the charta for an alrplano In an Incllned dive: .

Giv-en:

Nominal terminal velocity, U, miles per hour. . . 752
Starting altitude, H, feet. . . . . . . . . . . .16,000
Initial dive speed, mllea per hour . . . . . . . . 0
Initial dive angle, degrees . . . . . . . . . . . . 60
Terminal l.iachnumber, x~ . . . . , . . ● . . ● . , 0.75
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